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Abstract
An ideal switching effect is discovered in a semiconductor nanowire with a
spatially periodic Rashba structure. Bistable ‘ON’ and ‘OFF’ states can be
realized by tuning the gate voltage applied on the Rashba regions. The energy
range and position of ‘OFF’ states can be manipulated effectively by varying
the strength of the spin–orbit coupling (SOC) and the unit length of the periodic
structure, respectively. The switching effect of the nanowire is found to be
tolerant of small random fluctuations of SOC strength in the periodic structure.
The ideal switching effect might be applicable in future nanoelectronic devices.

1. Introduction

Spin freedom of electrons in semiconductors can be manipulated efficiently through the
mechanism of spin–orbit coupling (SOC) [1–3], which has been confirmed in experiments [4].
Among the several types of SOC in semiconductors, Rashba SOC [3], which results from
asymmetric electric confinement in nanostructures, is the most attractive because its strength
can be tuned easily by an external gate voltage [5, 6]. Various spintronic devices, such as the
spin filter [7], spin valve [8], and spin-field-effect transistor [9, 10], have been brought forward
in two-dimensional electron gases with Rashba interactions. Since no external magnetic field
is required to realize the control of the spin of electrons, all-electrical fabrication of practical
devices has been expected in such kinds of system [11, 12].

Recently, a switching effect of electronic flow in spin-field-effect transistors has been
proposed based on Rashba and/or Dresselhaus SOCs [13–15]. Jiang et al [14] and Gong et al
[15] investigated the electronic flow in a one-dimensional electron gas sandwiched between two
electrodes. The transmission coefficient of electrons in the drain electrode can be varied from 1
to 0 by tuning the SOC strength. However, in both schemes, the behavior of the switching effect
is strongly dependent on the height of the scattering potentials at the interfaces between the
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Figure 1. Schematic diagram of the switch device: a one-dimensional quantum wire along the x
direction with periodic Rashba structure.

sample and the electrodes. With a high interfacial barrier, the ‘ON’ state of the switch cannot
work effectively: the total transmission peak is too sharp to gain a stable ‘ON’ state. While
with a relatively low barrier, the ‘OFF’ state cannot be absolutely reached: there is usually
considerable leakage in the ‘OFF’ state even if the SOC strength is tuned to the maximum value
permitted in current experiments [5, 6]. And the barrier height cannot be controlled effectively
by experimental means. All these factors reduce the feasibility of practical application of the
switching schemes.

In the present work, an ideal switching effect is found in a one-dimensional semiconductor
quantum wire with a spatially periodic Rashba structure, where SOC and non-SOC segments
connect in series alternately. The principle of the effect can be rationalized by the transport
properties of the electrons in the wire. When an appropriate magnitude of Rashba strength
is provided, an energy gap can be formed near the boundaries of the Brillouin zone due to
the periodic Rashba potential. This causes the incident electrons with energies in the gap to
be totally reflected. If the Rashba strength is tuned to be smaller than a critical value, all the
incident electrons can be transmitted. Therefore, a stable ‘rectangle-type’ switching effect can
be obtained by controlling the Rashba SOC. Further investigation shows that the ideal switching
behavior survives from small fluctuations of the Rashba strength in the periodic structure.

2. Models and analysis

The geometry we consider is a narrow two-dimensional electron gas (2DEG) strip with a
periodic Rashba structure along the x direction, as illustrated in figure 1. Since the electrons
are confined in both y and z directions, a one-dimensional model2 can be employed in the
calculation. Each periodic unit consists of one non-SOC segment and one SOC segment with
the same length of a/2 (a is set at 24 nm in the following calculations except the case in
figure 2(b)). The symbol of Vg in the figure expresses the applied gate voltage to control the
Rashba strength. The gate electrodes are laid on the plane of the 2DEG. Note that in our
model the SOC and non-SOC segments are composed of the same semiconductor material.
Therefore, if gate voltage is removed (i.e. the Rashba SOC is neglected), all the segments unite
into a homogeneous structure. In the calculation, an electron wave is injected from the left to
the right along the x direction.

The Hamiltonian in the SOC segment can be written as [3]

H = p2
x

2m∗ − α

h̄
σy px, (1)

2 For example, the model can describe well a quasi-1DEG system with width less than 20 nm, since the first
confinement energy of the geometry is found to be higher than 20 meV and the Fermi energy of a semiconductor
2DEG is generally about or below 20 meV.
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Figure 2. (a) Transmission coefficient as a function of incident energy of electrons at different
Rashba strengths. (b) Transmission coefficient as a function of incident energy with different lengths
of unit cell. The Rashba strength is taken as α = 0.03 au.

where the effective mass of electrons m∗ is set as 0.067 me(me is the mass of the free electron),
σy is the Pauli spin operator, and px is the x-component of the momentum operator. The
parameter α describes the SOC strength. To determine the final transmission coefficient
after propagating through the whole quantum wire, we need to consider the transmission
process of an electron with energy E through one unit, and obtain the transfer matrix. To
provide a clear illustration, we label the segments in series: 1, 2, . . . , j, j + 1 . . ., as shown
in figure 1. Even j stands for SOC segments, and the wavefunction in it can be expressed as

ψ j = a j eik+ x |↑〉+ b j e−ik− x |↑〉+ c j eik− x |↓〉+ d j e−ik+ x |↓〉, where k+ = (
α+

√
α2 + 2h̄2 E

m∗
)

m∗
h̄2 ,

k− = (−α+
√
α2 + 2h̄2 E

m∗
)

m∗
h̄2 . The notations |↑〉 and |↓〉 express the eigenspinor states

( 1
i

)
and

( 1
−i

)
, respectively. Similarly, odd j stands for the non-SOC segments, where the wavefunction

can be written in the same form as an SOC segment with, however, different wavevectors:

k
+ = k− = k0 (k0 =

√
2m∗ E

h̄2 ).

Using boundary conditions at the interfaces of non-SOC/SOC, i.e. the continuous
conditions of wavefunctions and conservation ones of the current [8, 16, 17], we can get the
following transfer matrix for the wavefunctions at j = 2 and 1 segments:

⎛

⎜
⎝

a2

b2

c2

d2

⎞

⎟
⎠ = L−1

2 (x1)q
−1
2 q1L1(x1)

⎛

⎜
⎝

a1

b1

c1

d1

⎞

⎟
⎠ , (2)

where

L1(x1) =
⎛

⎜
⎝

eik+ x1 0 0 0
0 e−ik− x1 0 0
0 0 eik− x1 0
0 0 0 e−ik

+
x1

⎞

⎟
⎠ ,
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q1 =

⎛

⎜
⎜
⎝

1 1 0 0
0 0 1 1

h̄k+
m∗ − h̄k−

m∗ 0 0

0 0 h̄k−
m∗ − h̄k+

m∗

⎞

⎟
⎟
⎠ ,

q2 =

⎛

⎜
⎜
⎝

1 1 0 0
0 0 1 1

h̄k0

m∗ − α
h̄ − h̄k0

m∗ − α
h̄ 0 0

0 0 h̄k0

m∗ + α
h̄ − h̄k0

m∗ + α
h̄

⎞

⎟
⎟
⎠ ,

L2(x1) =
⎛

⎜
⎝

eik0 x1 0 0 0
0 e−ik0 x1 0 0
0 0 eik0 x1 0
0 0 0 e−ik0 x1

⎞

⎟
⎠ .

Note that L1(x1) and L2(x1) are related to the coordinates, while q1 and q2 are not.
The transfer matrix for the wavefunction in the j th segment can be deduced as M j =
L−1

j (x j−1)q
−1
j q j−1L j−1(x j−1) · · · L−1

3 (x2)q
−1
3 q2 L2(x2)·L−1

2 (x1)q
−1
2 q1 L1(x1), from which the

coefficients
(

a j

b j
c j
d j

)
in the j th segment can be expressed as

⎛

⎜
⎝

a j

b j

c j

d j

⎞

⎟
⎠ = M j

⎛

⎜
⎝

a1

b1

c1

d1

⎞

⎟
⎠ . (3)

From equation (3), the transmitted wavefunction in the j th segment can be obtained if the
incident wavefunction is known. The total transmission coefficient (T ) consisting of spin-up
and -down states in the j th segment is then calculated. In the switch scheme, ‘T = 1’ and ‘0’
correspond to ideal ‘ON’ and ‘OFF’ states of the outgoing wave, respectively.

In order to understand the switching effect well, we calculate the band structure of the
periodic structure by using the plane wave method. The wavefunction can be expressed
as: ψ = ψ1k(x)

( 1
0

) + ψ2k(x)
( 0

1

)
, where ψ1k(x) and ψ2k(x) are expanded in plane waves:

ψ1k(x) = 1√
L

∑
Kn

C1k(Kn)ei(Kn+k)x , ψ2k(x) = 1√
L

∑
Kn

C2k(Kn)ei(Kn+k)x , where L is the

total length of the nanowire, Kn is the reciprocal lattice vector, Kn = n 2π
a . The Rashba

interaction is modulated periodically along the x direction (see figure 1), and expanded as
α(Kn) = 1

a

∫ x2

x1
αe−iKn x dx . Solving the schrödinger equation in reciprocal space, we get two

coupling equations:

∑

Kn

(
h̄2(Kn + k)2

2m∗ − Ek

)
C1k(Kn)δ(Kn − Km)

− i

2

∑

Kn

(Km + Kn + 2k)α0(Km − Kn)C2k(Kn) = 0, (4)

∑

Kn

(
h̄2(Kn + k)2

2m∗ − Ek

)
C2k(Kn)δ(Kn − Km)

+ i

2

∑

Kn

(Km + Kn + 2k)α(Km − Kn)C1k(Kn) = 0. (5)

For each Km , there are two equations like the above. If the total number of plane
waves used is N , there will be 2N coupling equations, corresponding to 2N coefficients
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{C1k(Km),C2k(Km),m = 1, N}. The eigenvalues at each k point can be solved by
diagonalizing the secular equation.

3. Results and discussion

The transmission coefficients as a function of the incident energy of electrons at different
Rashba strengths are shown in figure 2(a). Note that the total transmission coefficient is
independent of the incoming spin state, as has been pointed out in previous work [18]. The
striking feature in the figure is the appearance of energy gaps, within which the transmission
coefficient T = 0. When the Rashba strength α = 0.03 au (1 au = 1.44 × 10−9 eVm), the
width of the gap is about 0.5 meV (roughly from 9.1 to 9.6 meV). That means the incident
electrons with energies in this range will be reflected totally by the periodic structure. The
width of the gap is found to be sensitively dependent on the Rashba strength. It is clear that the
gap becomes larger with the increase of the Rashba strength. In addition, the gap is also related
to the number of repeated periodic units in the structure (the number of repeats is set at 100
in the calculation for the periodic structure). At the same Rashba strength, the gap width will
increase with the increase in the number of the periodic units until it reaches a saturated value.
A larger number of units and a stronger α are expected to produce a wider gap. In the practical
case, an appropriate α value and number of units may be chosen.

To realize the switching effect, we hope that the Fermi energy of the incident electrons is
located within the energy gap, so that electrons cannot transmit through the quantum wire. This
state then corresponds to the ‘OFF’ state of a switch. In figure 2(b), we fix the SOC strength
α = 0.03 au, and give our attention to the gap position under different lengths of the unit cell.
It can be seen that the gap shifts toward the lower energy region with increase in a, which
can be rationalized by the properties of the band structure (in the following). Therefore, by
selecting appropriate lengths of a, the position of the energy gap can be modulated according
to the position of the Fermi energy.

From figure 2(a), we also find that only when the incident energy of the electrons is within
the energy gap, Rashba SOC makes the decisive contribution to the transmission coefficient.
Beyond the gap, the contribution of the Rashba SOC is negligible (T � 1). The oscillations
of transmission varying from T = 1 to 0 as the energy approaches the position of the
energy gap can be ascribed to the SOC/non-SOC interfaces [19] in the periodic structure. To
clearly illustrate the contribution of the Rashba SOC, we plot the dependence of transmission
coefficient on the Rashba strength in figure 3(a), in which the incident energies are given as 9.2,
9.3, and 9.4 meV. All of the energies are located in the transmission gap shown by the solid
curve in figure 2(a). Obviously, we obtain a binary ‘rectangle-type’ transmission behavior with
values of 1 and 0 by tuning the Rashba strength continuously. For a given energy (for example,
E = 9.3 meV), we can find a critical value αc (αc corresponds to the peak in the solid curve).
When α < αc, a nearly total transmission is achieved, corresponding to the ‘ON’ state. When
α > αc, no electrons can be transmitted, corresponding to the ‘OFF’ state. It is found that
a small incident energy corresponds to large αc, which can be illustrated by the trends of T
as a function of E at different Rashba strengths shown in figure 2(a). In reality, the incident
energies of the electrons may range from E1 to E2 (suppose E1 < E2), we need to find αc1

(corresponding to E1) and αc2 (corresponding to E2). When α > αc1, the switch is ‘OFF’,
when α < αc2, the switch is ‘ON’.

To gain a deeper insight into the properties of the switch, we investigate the band structure
of the one-dimensional system with periodic Rashba potential. Figure 3(b) shows the band
structures without (α = 0) and with Rashba SOC (α = 0.03 au), respectively. Comparing
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Figure 3. (a) Transmission coefficient as a function of the Rashba strength with different incident
energies. (b) Band structures of one-dimensional quantum wires. Dotted curve: no Rashba
interaction, solid curve: Rashba strength α = 0.03 au.

the solid curve and the dotted one, we find that due to the Rashba spin–orbit interaction, the
degenerate band structure splits into two subbands: one is for spin-up and the other for spin-
down. Here we emphasize the energy gap near the boundaries of the Brillouin zone. With the
same parameters as in the case of the solid curve in figure 2(a), the gap width in figure 3(b)
is also about 0.5 meV from 9.1 to 9.6 meV. There is, in fact, a difference in the geometries
between figures 3(b) and 2(a). For the band structure calculation, the one-dimensional system
is infinitely long, while the switch structure is a quantum wire with finite length. The fact that
figures 3(b) and 2(a) produce almost the same gap demonstrates that the length of the periodic
Rashba structure in figure 2(a) is long enough to be equivalent to the infinite one. With weak
Rashba strength, the difference between the two structures can be observed. In figure 2(a),
when Rashba strength is decreased to 0.02 au, the energy gap is smeared out. If we increase
the number of the periodic unit cell, the gap will be opened.

In a practical case, the SOC strength may not change abruptly at the SOC/non-SOC
interfaces. Due to boundary effects, there is usually leakage of electric field outside the
gate electrodes and the SOC strength may experience a smooth change from the full value to
zero. The switching effect is, however, essentially from the controllable periodic structure. To
illustrate this main feature, we employ a sinusoidal function α(x) = α0(Sin(2πx/a)+ 1)/2 to
approximately simulate the smooth change of the SOC strength possibly appearing in practical
cases. The schematic diagram of the smooth SOC distribution as a function of position is shown
in figure 4(a) (solid curve). For comparison, the ‘abrupt’ case is also given in figure 4(a) (dashed
curve). The obtained transmission coefficients3 are displayed in figure 4(b), in which the solid
curve is the numerical result of the ‘smooth’ model, and the dash curve of the ‘abrupt’ one.
The calculation parameters chosen are the same for the two models; for example, the periodic
length a = 24 nm and the amplitude of the SOC strength is 0.03 au. In figure 4(b), it is obvious
that for the ‘smooth’ model there is still an energy interval within which the electrons cannot
be transmitted. Based on this energy gap, an ideal switching effect can be obtained by tuning
the SOC strength for the ‘smooth’ case. The width of the energy interval for the ‘smooth’ case
is slightly narrower than that for the ‘abrupt’ case, which will only slightly affect the switching
behaviour in quantity. Therefore, it can be inferred that the switching effect is robust even
when the leakage effect is considered. We also calculate the band structure (not shown) for

3 The transmission coefficient for the ’smooth’ model is calculated by using discrete lattice model with the help of the
Green’s function method, which has been introduced in detail in [20].
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Figure 4. (a) Schematic diagram of the continuous change of SOC strength as a function of x (solid
curve) and the abrupt change (dashed curve). (b) The transmission coefficients as a function of the
incident energy. The dashed curve shows the result of the ‘abrupt’ case and the solid curve shows
the result of the ‘smooth’ case. The amplitude for the SOC strength α0 = 0.03 au and the periodic
length a = 24 nm. (c) Transmission coefficient versus the incident energy in a disordered structure.
The number of units in the structure is 100. (d) The same as in (c) but with the number of units
being 1000.

this ‘smooth’ case and the obtained energy gap is consistent with the result shown by the solid
curve in figure 4(b).

Another point to be considered is that we usually cannot get a perfect periodic structure,
for example α j may fluctuate from its set value. Here we consider a disordered SOC structure,
i.e. the Rashba strengths in SOC segments are randomly given, and investigate its switching
effect. Figure 4(c) shows the case in which Rashba strengths randomly fluctuate from 0.02 to
0.03 au. Comparing figure 4(c) with the dashed curve of figure 2(a), whose Rashba strength is
set at 0.025 au (the average value of 0.02 and 0.03 au), it is found that the energy gaps in the two
cases show little difference. Therefore, it can be inferred that the switching effect we obtained
is tolerant of such disorder. In addition, to our knowledge, in a one-dimensional system the
presence of disorder will induce localized states of electrons, which is a critical difference
between periodic and disordered systems. Therefore, the ‘OFF’ state may be achieved due
to the localized states in an ideal disordered system. For example, if the number of periodic
units in the structure increases from 100 in figure 4(c) to 1000 in figure 4(d), the small dips in
the energy region of 2.0–8.0 meV will become deeper. Some gaps may form with the further
increase of the length of the structure.

4. Conclusions

A perfect switching effect of electronic flow is found in a one-dimensional nanowire with
spatially periodic Rashba spin–orbit coupling. A stable ‘rectangle-type’ switching effect is
obtained by controlling the Rashba SOC strength. The leakage of electric field outside of gate
electrodes may only slightly influence the effect in quantity. The switching effect also behaves
well even if the fluctuations in the Rashba strengths destroy the periodic structure to some
extent.
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